skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Goodwell, Allison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. NA (Ed.)
    Satellite-based evapotranspiration (ET) products inform decision-making regarding water availability and plant water use from sub-field to watershed scales. These products are validated using eddy covariance flux towers, where observations are subject to the influence of landscape heterogeneity due to a constantly shifting contributing area, or flux footprint, governed by surface and atmospheric drivers. In agricultural regions with multiple crop types, local heterogeneity may amplify the importance of appropriate grid cell selection for satellite ET comparisons. We evaluate the extent to which different satellite ET products capture both ET magnitudes and spatial variability due to landscape heterogeneity. We compare ECOSTRESS 70m instantaneous and daily ET products to flux tower observations in central Illinois with measurements at two heights, representing different but overlapping flux footprint areas. We estimate satellite ET based on a flux footprint weighting, gridded averages around the tower, and for crop-specific corn or soybean grid cells. In this region, the disALEXI daily ET product has better overall performance relative to the PT-JPL daily product, which is more sensitive to overpass times and tends to overestimate instantaneous ET. However, the PT-JPL model reflects more variability at high spatial resolution. Specifically, a footprint-derived ET improves the data-model comparison relative to disALEXI, and PT-JPL more closely replicates crop-specific and field-specific differences as inferred from the 2-height experimental setup. This study highlights differences in how models integrate spatial inputs, which lead to different representations of spatial variability for the same nominal resolution. This can also have important implications for understanding and predicting field-level differences in land-atmosphere fluxes. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. NA (Ed.)
    Ecohydrological systems comprised of soil, water and vegetation are intricately connected, and changes in one component can trigger feedback mechanisms throughout the network. Understanding how these complex interactions occur and propagate is challenging. To address this, Dr Allison Goodwell and Professor Praveen Kumar from the University of Illinois Urbana-Champaign have characterised information flow — a mathematical concept initially developed for communication systems — to better quantify and understand these interactions. Their research offers new insights into ecosystem responses, evolving precipitation patterns, and ecohydrological models, advancing our understanding of environmental dynamics. 
    more » « less
  3. Abstract Surface runoff and infiltrated water en route to the stream interact with dynamic landscape properties, ranging from vegetation and microbial activities to soil and geological attributes. Stream solute concentrations are highly variable and interconnected due to these interactions, flow paths, and residence times, and often exhibit hysteresis with flow. Significant unknowns remain about how point measurements of stream solute chemistry reflect interdependent hydrobiogeochemical and physical processes, and how signatures are encapsulated as nonlinear dynamical relationships between variables. We take a Machine Learning (ML) approach to understand and capture these dynamical relationships and improve predictions of solutes at short and long time scales. We introduce a physical process‐based “flow‐gate” into an Long Short‐Term Memory (LSTM) model, which enables the model to learn hysteresis behaviors if they exist. Further, we use information‐theoretic metrics to detect how solutes are interdependent and iteratively select source solutes that best predict a given target solute concentration. The “flow‐gate LSTM” model improves model predictions (1%–32% decreases in RMSE) relative to the standard LSTM model for all nine solutes included in the study. The predictive improvements from the flow‐gate LSTM model highlight the importance of lagged concentration and discharge relationships for certain solutes. It also indicates a potential limitation in the traditional LSTM model approach since flow rates are always provided as input sources, but this information is not fully utilized. This work provides a starting point for a predictive understanding of geochemical interdependencies using machine‐learning approaches and highlights potential improvements in model architecture. 
    more » « less
  4. Eddy covariance measurements quantify the magnitude and temporal variability of land-atmosphere exchanges of water, heat, and carbon dioxide (CO 2 ) among others. However, they also carry information regarding the influence of spatial heterogeneity within the flux footprint, the temporally dynamic source/sink area that contributes to the measured fluxes. A 25 m tall eddy covariance flux tower in Central Illinois, USA, a region where drastic seasonal land cover changes from intensive agriculture of maize and soybean occur, provides a unique setting to explore how the organized heterogeneity of row crop agriculture contributes to observations of land-atmosphere exchange. We characterize the effects of this heterogeneity on latent heat ( LE ), sensible heat ( H ), and CO 2 fluxes ( F c ) using a combined flux footprint and eco-hydrological modeling approach. We estimate the relative contribution of each crop type resulting from the structured spatial organization of the land cover to the observed fluxes from April 2016 to April 2019. We present the concept of a fetch rose, which represents the frequency of the location and length of the prevalent upwind distance contributing to the observations. The combined action of hydroclimatological drivers and land cover heterogeneity within the dynamic flux footprint explain interannual flux variations. We find that smaller flux footprints associated with unstable conditions are more likely to be dominated by a single crop type, but both crops typically influence any given flux measurement. Meanwhile, our ecohydrological modeling suggests that land cover heterogeneity leads to a greater than 10% difference in flux magnitudes for most time windows relative to an assumption of equally distributed crop types. This study shows how the observed flux magnitudes and variability depend on the organized land cover heterogeneity and is extensible to other intensively managed or otherwise heterogeneous landscapes. 
    more » « less
  5. Fujiwara, Masami (Ed.)
    The migration timing of Pacific salmon in the Columbia River basin is subject to multiple influences related to climate, human water resource management, and lagged effects such as oceanic conditions. We apply an information theory-based approach to analyze drivers of adult Chinook salmon migration within the spring and fall spawning seasons and between years based on salmon counts at dams along the Columbia and Snake Rivers. Time-lagged mutual information and information decomposition measures, which characterize lagged and nonlinear dependencies as reductions in uncertainty, are used to detect interactions between salmon counts and lagged streamflows, air and water temperatures, precipitation, snowpack, climate indices and downstream salmon counts. At a daily timescale, these interdependencies reflect migration timing and show differences between fall and spring run salmon, while dependencies based on variables at an annual resolution reflect long-term predictability. We also highlight several types of joint dependencies where predictability of salmon counts depends on the knowledge of multiple lagged sources. This study illustrates how co-varying human and natural drivers could propagate to influence salmon migration timing or overall returns, and how nonlinear types of dependencies between variables enhance predictability of a target. This information-based framework is broadly applicable to assess driving factors in other types of complex water resources systems or species life cycles. 
    more » « less
  6. Ecohydrological models vary in their sensitivity to forcing data and use available information to different extents. We focus on the impact of forcing precision on ecohydrological model behavior particularly by quantizing, or binning, time-series forcing variables. We use rate-distortion theory to quantize time-series forcing variables to different precisions. We evaluate the effect of different combinations of quantized shortwave radiation, air temperature, vapor pressure deficit, and wind speed on simulated heat and carbon fluxes for a multi-layer canopy model, which is forced and validated with eddy covariance flux tower observation data. We find that the model is more sensitive to radiation than meteorological forcing input, but model responses also vary with seasonal conditions and different combinations of quantized inputs. While any level of quantization impacts carbon flux similarly, specific levels of quantization influence heat fluxes to different degrees. This study introduces a method to optimally simplify forcing time series, often without significantly decreasing model performance, and could be applied within a sensitivity analysis framework to better understand how models use available information. 
    more » « less
  7. Both spatial and temporal information sources contribute to the predictability of precipitation occurrence at a given location. These sources, and the level of predictability they provide, are relevant to forecasting and understanding precipitation processes at different time scales. We use information theory-based measures to construct connected “chains of influence” of spatial extents and timescales of precipitation occurrence predictability across the continental U.S, based on gridded daily precipitation data. These regions can also be thought of as “footprints” or regions where precipitation states tend to be most synchronized. We compute these chains of precipitation influence for grid cells in the continental US, and study metrics regarding their lengths, extents, and curvature for different seasons. We find distinct geographic and seasonal patterns, particularly longer chain lengths during the summer that are indicative of larger spatial extents for storms. While synchronous, or instantaneous, relationships are strongest for grid cells in the same region, lagged relationships arise as chains reach areas farther from the original cell. While this study focuses on precipitation occurrence predictability given only information about precipitation, it could be extended to study spatial and temporal properties of other driving factors. 
    more » « less
  8. null (Ed.)
    Abstract The spatial and temporal ordering of precipitation occurrence impacts ecosystems, streamflow, and water availability. For example, both large-scale climate patterns and local landscapes drive weather events, and the typical speeds and directions of these events moving across a basin dictate the timing of flows at its outlet. We address the predictability of precipitation occurrence at a given location, based on the knowledge of past precipitation at surrounding locations. We identify “dominant directions of precipitation influence” across the continental United States based on a gridded daily dataset. Specifically, we apply information theory–based measures that characterize dominant directions and strengths of spatial and temporal precipitation dependencies. On a national average, this dominant direction agrees with the prevalent direction of weather movement from west to east across the country, but regional differences reflect topographic divides, precipitation gradients, and different climatic drivers of precipitation. Trends in these information relationships and their correlations with climate indices over the past 70 years also show seasonal and spatial divides. This study expands upon a framework of information-based predictability to answer questions about spatial connectivity in addition to temporal persistence. The methods presented here are generally useful to understand many aspects of weather and climate variability. 
    more » « less